
Serverless Architecture by Example

● Open up your laptop, connect to wifi, and
open your (recent) web browser

● Log in to the Google Cloud console:
https://console.cloud.google.com/

● Set up a new Gmail account if needed
● Activate a billing account with a coupon if

you have not already done so

Welcome to the workshop!

https://console.cloud.google.com/

Serverless Distributed
Architecture

by
Incremental Example

Laurie White (lauriewhite@google.com)
Charles Engelke (engelke@google.com)

Google Cloud Developer Relations

ACM SIGCSE 2020
Portland, OR
March 11, 2020

Slides and exercises online at

https://serverlessworkshop.dev

https://serverlessworkshop.dev

You will build a loosely-coupled, event driven, distributed
serverless system today

So get your laptops ready!

Welcome to the workshop!

Today's agenda
1. Would you like to play a (dumb) game?

2. What is serverless, anyway?

3. Problem description

4. General architecture of solution

5. Three hands-on codelabs

6. Recap

The game
● Contestants play a number guessing game

○ Guess a number from 10 to 50. You already guessed 17, but the
answer is higher. You also guessed 38, but the answer is lower.

○ Is it 25?
● You will build and deploy a serverless guesser
● See how to architect entire contest judging and scoring system

○ Multiple serverless components
○ Loosely connected via messaging
○ With a NoSQL data store

● Codelabs cover every part of above, but some may be skipped for time

Serverless computing
Spoiler alert: There are still servers. Don't tell anybody!

● But they are the cloud platform's problem, not yours
● You don't have to provision, manage, monitor, or scale them
● And many serverless options scale down to zero when idle

There are different flavors of serverless computing

● Container based - the platform handles the kernel and scaling,
you handle support systems (like libraries)

● Managed - you bring your application code, the platform handles
everything else

This workshop uses managed serverless
You are responsible for your application code

● The cloud platform handles all supporting software,
monitoring platform health, and scaling

● Important - many platforms can scale to zero
○ So idle times don't have any compute costs

Your code may be unloaded, reloaded or loaded into multiple
hosts at any time

● So you can't save any state in memory or on disk
● And you may have startup latency at times

Common characteristics of serverless
Stateless software
● External data stores are used when needed

Many pieces, loosely coupled
● Handle one task, trigger other pieces as needed for more

Event-driven
● Code runs when something happens
● A web request, a storage event, a message delivered

Asynchronous communications
● Send requests but don't wait for responses

The Problem: Programming Contests
● Participants are given a set of problems to code

○ In the form "read an input file, produce an output file"

● Contestants code solutions, test with provided sample data
and (we hope) their own test data

● Solutions are turned in (physical media, email, etc.)

○ Judges compile and test solutions with multiple data sets

● Contestants are told whether they passed, failed, timed out,
or crashed

Running the submissions is a mess

● Keeping track of what was submitted, and when

○ Especially if physical media is involved

● Avoiding malicious code on the test machines

○ Or just dangerously buggy code

● Dealing with different machine configurations

Solution: don't submit programs
● Run the solutions on the contestant's infrastructure

○ Provide input, receive output?

○ Sounds like an HTTP(S) request

● Contestants deploy their solutions to the web

○ Provide a URL to the judges

● Judges run the code multiple times via web requests

○ (Need to slightly randomize test data so contestants
don't read their logs and hard code answers)

High-level System Diagram

We'll build these

Can we expect contestants to manage and deploy to their own web
servers?

● No, if they have to handle system configuration and administration
● Yes, if they use a lightweight managed serverless platform

○ The shortest path from works on my machine to running
successfully on the internet

We will start the workshop with this part of the problem

● Contestant deploys solution to the web

We will go on to the more complex judging system afterwards

Is this practical?

We'll use Google Cloud Platform
That doesn't mean other cloud platforms couldn't be used

● They have many similar offerings
● But the steps and details would be different

Also - we work for Google. We know it best, and can provide
credits to cover the cloud costs of this workshop.

Want to try this out on another platform after the workshop?

● Fork the repository and adapt it as needed
● Let us know - we're interested!

Workshop resources

● Your laptop with an internet connection and a modern web browser
● A Google account

○ Might be able to use a GSuite account, but administrators can
disable Cloud Console access

○ Set up a plain vanilla Google account to avoid roadblocks
● The cloud coupon we handed out

○ Apply the coupon at console.cloud.google.com/edu
○ No chance of being charged if you don't provide a credit card

https://console.cloud.google.com/edu

Workshop materials
These slides - serverlessworkshop.dev/slides.pdf

Source code:

github.com/GoogleCloudPlatform/serverless-game-contest

Codelabs:

Player - serverlessworkshop.dev/player

Questioner - serverlessworkshop.dev/questioner

Manager - serverlessworkshop.dev/manager

https://serverlessworkshop.dev/slides.pdf
https://github.com/GoogleCloudPlatform/serverless-game-contest
https://serverlessworkshop.dev/player
https://serverlessworkshop.dev/questioner
https://serverlessworkshop.dev/manager

serverlessworkshop.dev

https://serverlessworkshop.dev/

GCP Projects
● All GCP resources live in projects

○ Resources in the same project can usually interact with
each other

○ You can enable resources in different projects to interact
○ You can restrict resources in the same project from

interacting
● Contestants and the judging system would, in practice, be in

separate projects, owned by different entities
○ But to keep things simple, we will create and use one

project for everything in this workshop
○ We will discuss how it could be separated, though

Google Cloud Developer Console

Creating a Project - Click the drop-down

Click NEW PROJECT

Call it whatever you like
For example "yourname-serverless-workshop"

Click the notification when ready to open the project

The project name will be in URLs, which will show in contest
results, so pick a name you're okay with others seeing!

The Player

Start simple - the game player
● Contestant writes a program that accepts an

HTTP request representing the game state
● Responds with a game move
● Deploys program to the internet
● Submits the program for judging by providing

the URL

We will address the more complex judging system
after working out the basics with this program

Recall the High-level System Diagram

We will call this program
the player

● Managed serverless platform
○ Provide a program
○ Specify a triggering event (web request)
○ Platform runs the program when the event occurs

● Benefits of Cloud Function platform
○ No system administration, just write a program
○ Scales as needed automatically
○ Scales to zero when idle

Player platform: Google Cloud Functions

How the judging system plays a
game

1. Sends initial game state to player
2. Gets a move in response
3. Updates the game state, make the opponent's move if needed
4. Sends the new game state to get the next move

1

2

3

4

Example game: Tic-tac-toe first move

● Initial game state is an empty board

● Represented in JSON:

{"marks-so-far": [], "your-mark": "X"}

● Player responds with JSON representation of a move:

{"row": 2, "column": 2}

(Contest says rows and columns numbered 1, 2, 3)

Judging system processes move
● Makes a move of its own
● Asks player for another move, given new game state:

{"marks-so-far": [

 {"mark": "X", "row": 2, "column": 2},

 {"mark": "O", "row": 1, "column": 1}],

 "your-mark": "X"}

● Player responds with another move
{"row": 1, "column": 2}

● Play continues until player wins, loses, fails, or crashes

Coupling?
The player is nearly completely uncoupled from the judging system

● Only connection is HTTP requests over public internet

That's important, because each contestant builds a separate player

● Don't want to have them sharing resources with each other, or with
the judging system

In general, minimizing coupling between components makes system
design, deployment, and maintenance more flexible and secure

Rules for our game

1. The simplest possible game: guess a number
2. Given minimum and maximum, and history of guesses
3. Respond with a whole number guess

We don't worry about the judging system for now (we're the
contestant who has to write a player).

● You can submit your solution to example judging system
https://serverlessworkshopdemo.appspot.com/

https://serverlessworkshopdemo.appspot.com/

Starting input example

{

 "minimum": 1,

 "maximum": 10,

 "history": []

}

Example output

6

Yes, this is the JSON
representation of a
whole number

Second example move request

{

 "minimum": 1,

 "maximum": 10,

 "history": [

 {"guess": 6, "result": "higher"}

]

}

Time to Build and Deploy the Solution

Hands-on codelab at

https://serverlessworkshop.dev/player

https://serverlessworkshop.dev/player

Want to try it out?
The system being built for this workshop has a live version
available:

https://serverlessworkshopdemo.appspot.com/

You can submit the player you just wrote to be judged there

https://serverlessworkshopdemo.appspot.com/

Player recap
The player does only one simple thing:

● Make a move given the existing game state

The player does not keep state

● It doesn't know its previous moves, it has to be told when
a new move is requested

Moves are made in response to a web request

● Cloud function platform invokes the player code when a
request arrives

A rare Cloud Function "gotcha"
● You write an entire program, but each event triggers only one

function in it
○ Mental model may be "when the event happens, my program

is loaded and the function is called" but that's not correct
○ Actual behavior when event happens is "if my program has

already been loaded, just call the function, otherwise load it
and then call the function"

● So global actions from one event may or may not affect handling
future events
○ Subtle effects from initialization code and memory leaks are

possible

The Judging System - Part 1

Recall the High-level System Diagram

● Traditional approach might be a single web server app
○ Interacts with contestants
○ Plays games against submitted solutions
○ Track scores in persistent data

● Would restrict flexibility in design and future expansion
○ Game judging components are often created by multiple

parties, with different playing scenarios
○ Using a different game requires rebuilding whole system
○ Every submitted solution would have to wait for games to be

played, or have concurrency programmed in

Looks like a monolith

Look at the needs one at a time
● First - Something needs to play the game against submissions

○ Call this a questioner
○ Needs to know the player URL
○ Plays the game against the player on its own
○ Needs to know what to do with the result of play

● So build the questioner as an independent component
○ Provide the player URL and another URL to send the result

of play for recording
○ Easy to run multiple questioners against each submission
○ Use asynchronous request to trigger start of play

Platform choice - Cloud Functions

● Any compute service could do, but we have a program that
does a single task, which is a good fit for Cloud Functions

● Trigger asynchronously, though
○ Cloud functions can be triggered by a variety of events
○ This one should trigger on a message being published to a

Pub/Sub topic by the rest of the judging system

Reliable messaging system

Messages belong to topics

● Messages are published to a topic
● Programs subscribe to a topic to get all messages
● Can be one-to-one, one-to-many, or many-to-many

Asynchronous, reliable delivery

● Messages will be delivered to every subscriber at least
once

● Delivery order is not guaranteed

Google Pub/Sub

Triggering via Pub/Sub

Judging
System

Topic: Play game
Cloud Pub/Sub

First questioner
Cloud Functions

Second questioner
Cloud Functions

Third questioner
Cloud Functions

Player
Cloud Functions

Why not just send HTTP request?
● HTTP requests are synchronous

○ Invoker sends the request and waits for a response
○ We don't want our main program to have to wait

● Pub/Sub is asynchronous
○ Invoker publishes a message, returns immediately
○ Pub/Sub delivers the message to every subscriber
○ (And waits for each subscriber to finish, if needed)

Factor out the Questioner(s)

Message body

{

 "player_url": "some-url",

 "result_url": "another-url",

 "contest_round": "a random ID",

 "secret": "a shared random string"

}

Coupling?
● Questioner ↔ Player?

○ HTTP requests and responses only

● Judging system ↔ Questioner?
○ Questioner must be able to subscribe to Pub/Sub topic

that judging system publishes to
■ If components are in separate projects, permission

to other project must be explicitly granted
○ Results sent from the questioner to the judging system

via HTTP POST to a provided URL

Time to Build and Deploy the Solution

Hands-on codelab at

https://serverlessworkshop.dev/questioner

https://serverlessworkshop.dev/questioner

Questioner recap
Another event-driven cloud function

● But triggered asynchronously instead of via a web request

Pub/Sub trigger lets us send one message that many questioners
subscribe to

Questioners create results that need to be saved, but they aren't
responsible for doing the saving

● They're told to send them to URL
● Reduces system coupling

The Judging System - Part 2

The system so far Call the remaining judging
system the manager

What does the manager do?

1. Displays current results on a web page
2. Lets contestants submit solutions
3. Invoke questioners by publishing messages
4. Accept results from questioners

Can we partition it further?

Smaller pieces are easy to create and maintain

Interact with
people

Interact with software

Break manager into two parts
1. Web application people interact with
2. Web service that accepts results from

questioner software

Connect via a shared database

1. Web app adds submissions to database
2. Web server adds results to submissions

System Coupling

Add front-end user authentication

Left to deploy

Time to Build and Deploy the Solution

Hands-on codelab at

https://serverlessworkshop.dev/manager

https://serverlessworkshop.dev/manager

Recap
Created a distributed serverless system

● Different portions owned by different entities
● Player owned by a contestant
● Manager owned by the contest runners
● Questioners delegated from the contest runners

Used several serverless tools

● Function as a service (Cloud Function), platform as a service (App
Engine), reliable messaging (Pub/Sub), NoSQL database (Firestore),
user authentication as a service (Identity-Aware Proxy)

Thank you!

serverlessworkshop.dev

serverlessworkshop@google.com

https://serverlessworkshop.dev/

